DRAFT
Placeholder - Download the 2023 5 Year ACS. Variables are statefips, puma, household Income and foodstamps.
Puma/State are the bridge between the shapefiles and the database
create database puma_db;
create user 'puma_user'@'%' identified by 'xxxxx';
grant all privileges on puma_db.* to 'puma_user'@'%';
mysql> create table temp
(
year int(4),
multi_year int(4),
sample int(8),
serial int(12),
cbserial int, -- Serial number of the sample
hh_weight float, -- number of households represented by this . This is the actual number of households represented
cluster int,
statefip int(6), -- state code
puma int(8), -- pumary region. State + puma = usable puma code
strata int,
gq int, -- Group quarters
hh_income int, -- Income for this household
foodstamps int(3) -- 0 na, 1 no, 2 yes
);
-- ----------------------------------------------------------------------------------------------------
-- Notes: if you sum the hh_weight for the entire set where gq = 1, then you get a value of about 127MM
-- This matches what the ACS says about the number of households
-- ----------------------------------------------------------------------------------------------------
-- GQ
-- 0 Vacant unit
-- Households:
-- 1 Households under 1970 definition
-- 2 Additional households under 1990 definition
-- 3 Institutions
-- 4 Other group quarters
-- 5 Additional households under 2000 definition
-- 6 Fragment
create index ie1_temp on temp (statefip, puma);
-- ----------------------------------------------------------------------------------------------------
fdsfdsfsdfsd
drop table if exists meta_values;
create table meta_values
(
id integer not null auto_increment,
name varchar(64),
code integer,
value integer,
primary key (id)
);
insert into meta_values (name, code, value)
select 'total occupied US households', 1, sum(hh_weight) from temp where gq = 1;
insert into meta_values (name, code, value)
select 'households by state' as household, statefip, sum(hh_weight)
from temp
where gq = 1
group by household, statefip;
insert into meta_values (name, code, value)
select 'households by puma' as household, concat(statefip, lpad(puma,5,0)), sum(hh_weight)
from temp
where gq = 1
group by household, statefip, puma;